310. Minimum Height Trees

  • 28.6%

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format

The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

1
2
3
4
5
6
7
8
9
10
Example 1:

Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]

0
|
1
/ \
2 3
return [1]
1
2
3
4
5
6
7
8
9
10
11
12
Example 2:

Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

0 1 2
\ | /
3
|
4
|
5
return [3, 4]

Hint:

How many MHTs can a graph have at most?

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.


谢谢你,可爱的朋友。